Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
EMBO Mol Med ; 14(5): e14844, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1776709

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can cause gastrointestinal (GI) symptoms that often correlate with the severity of COVID-19. Here, we explored the pathogenesis underlying the intestinal inflammation in COVID-19. Plasma VEGF level was particularly elevated in patients with GI symptoms and significantly correlated with intestinal edema and disease progression. Through an animal model mimicking intestinal inflammation upon stimulation with SARS-CoV-2 spike protein, we further revealed that VEGF was over-produced in the duodenum prior to its ascent in the circulation. Mechanistically, SARS-CoV-2 spike promoted VEGF production through activating the Ras-Raf-MEK-ERK signaling in enterocytes, but not in endothelium, and inducing permeability and inflammation. Blockage of the ERK/VEGF axis was able to rescue vascular permeability and alleviate intestinal inflammation in vivo. These findings provide a mechanistic explanation and therapeutic targets for the GI symptoms of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Enterocitos/metabolismo , Humanos , Inflamación/metabolismo , Glicoproteína de la Espiga del Coronavirus , Factor A de Crecimiento Endotelial Vascular
2.
Ann Transl Med ; 9(21): 1631, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1518876

RESUMEN

Coronavirus disease 2019 (COVID-19) has threatened human health worldwide and could lead to multiple organs injury. However, the impact on the virus infecting the biliary system, especially the gallbladder, has remained unclear and no pathological evidence has been reported yet. A case of SARS-CoV-2 infection in a gallbladder with cholecystitis, which progressed rapidly to sepsis and required an emergency operation was investigated and reported. Clinical specimens of the COVID-19 patient including serum, oropharyngeal swabs, sputum, bile, abdominal drainage fluid, urine, stool, and gallbladder tissue were collected and tested for SARS-CoV-2 RNA using a quantitative polymerase chain reaction (qPCR) assay. Fresh normal gallbladder tissue and gangrenous gallbladder tissue were also collected for further research including hematoxylin and eosin (HE), immunohistochemistry (IHC), and immunofluorescent (IF) staining, and compared with the gallbladder from the COVID-19 patient. The bile, as well as the serum, oropharyngeal swabs, sputum, abdominal drainage fluid, urine, and rectal swabs were consecutively negative for SARS-CoV-2 RNA. The viral host receptor angiotensin-converting enzyme 2 (ACE2) was highly expressed in gallbladder epithelial cells, and viral nucleocapsid protein (NP) was visualized in the cytoplasm of gallbladder epithelial cells. Immune cells including CD2, CD3, CD4, CD8, CD20, CD38, CD68, and MPO were positive in gangrenous gallbladder tissues without SARS-CoV-2 infection, and were relatively downregulated in SARS-CoV-2 infective gallbladder tissue. This study provided evidence of SARS-CoV-2 infection in the gallbladder and verified that the gallbladder was one of the target organs that SARS-CoV-2 could attack and damage using ACE2 as a cell receptor. Due to the immune dysregulation involved, more vigilant management and early assessment is needed for COVID-19 patients with the comorbidity of cholecystitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA